Reasoning and Explaining in the Mathematics Classroom, Grade 6-12: What Counts as Proof?

Some Examples, Non-Examples, and Almost Examples

Brad Findell, Ohio State University

November 7, 2017

Opportunities for Explaining

- 3.OA.9. Identify arithmetic patterns ... and explain them using properties of operations.
- 3.MD.7. [Explain] commutativity of multiplication
- 4.NF.1. Explain equivalence of fractions using visual fraction models)
- 4.NBT.5. [Explain] multiplication of two two-digit numbers using strategies based on place value and the properties of operations.
- 6.G.1. [Explain] areas of polygons.
- 8.EE.1. Explain properties of integer exponents.
- 8.EE.6. Explain why slope is the same between any two points on a line
- 8.EE.7. Explain an equation with no solutions or infinitely many solutions
- 8.NS.1. [Explain] informally for rational numbers why their decimals terminate or repeat.

Opportunities for Explaining

- F.IF.8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
- A.REI.11. Explain why the x-coordinates of the points where the graphs of the equation y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x)
- N.RN.1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.
- N.RN.3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
- G.GPE.5. Justify the slope criteria for parallel and perpendicular lines.
- G.CO.14. Classify two-dimensional figures in a hierarchy based on properties.

The Sum of Two Odd Numbers Is Even (Proof 1)

- When we go to recess, we line up with partners.
- If one student doesn't have a partner, that means there are an odd number of students.
- If two classrooms each have an odd number of students, then the two left-over students can be partners with each other.
- So the two classrooms together will have an even number of students.
- Some kindergarteners can produce the gist of this proof.

The Sum of Two Odd Numbers is Even (Proof 2)

• True. For example, 3 + 5 = 8. And 7 + 11 = 18. Here is a picture:

- These kinds of "proofs" disregard the nature of proof—the generality that a proof should convey.
- But in what way are the following pictures better?

The Sum of Two Odd Numbers is Even (Proof 3)

- The structure of the previous pictures suggested generality that is here represented with ellipses (*aka* dots).
- What words should accompany this to make it a proof?

The Sum of Two Odd Numbers is Even (Proof 4)

- Suppose *n* and *m* are two odd numbers.
- Then n = 2k + 1 and m = 2j + 1 for some integers j and k.
- Then n + m = (2k + 1) + (2j + 1) = 2 (j + k + 1), which is an even number.
- Questions:
 - How is this different from the kindergarten proof? From the pictorial proof?
 - Would this get full credit?
 - What would this look like in two columns?

The Sum of Two Odd Numbers Is Even (Proof 5)

		Why don't we
Statement	Reason	expect two-column
1. Let <i>n</i> and <i>m</i> be two odd numbers.	Given	proofs in algebra?
2. Then <i>n</i> = 2 <i>k</i> + 1 and <i>m</i> = 2 <i>j</i> + 1 for some integers <i>j</i> and <i>k</i> .	Definition of odd number	
3. Then $n + m = (2k + 1) + (2j + 1)$	Substitution	
4. Then $n + m = 2k + 1 + 2j + 1$	Associative property of addition	on
5. Then $n + m = 2k + 2j + 2$	Associative and commutative	properties of addition
6. Then $n + m = 2 (j + k + 1)$	Distributive property of multiplication over addition	
7. $B = j + k + 1$ is an integer	Closure property of the intege	rs
8. Then $n + m = 2B$, which is even	Substitution; definition of even number	

Note: Previous step 3 became six steps, and still some statements required multiple reasons.

What About These "Proofs"?

- Proof 6:
 - Suppose *n* and *m* are two odd numbers.
 - Then n = 2k + 1 and m = 2j + 1.
 - Then n + m = (2k + 1) + (2j + 1) = 2(j + k + 1), which is even.
- Proof 7:
 - An odd number is n = 2k + 1, where k is an integer. The sum of two odd numbers would be n + n = (2k + 1) + (2k + 1) = 4k + 2 = 2(2k + 1), which is even.
- Questions:
 - Is one of these better than the other?
 - How much credit would you give each?

Isosceles Triangle Theorem (Proof 1)

• Given AC = BC, prove $m \angle A = m \angle B$.

Statement	Reason
1. AC = BC	1. Given.
2. $\overline{AC} \cong \overline{BC}$	2. Definition of congruence.
3. Let <i>M</i> be midpoint of \overline{AB}	3. Existence of midpoint.
4. $\overline{AM} \cong \overline{BM}$	4. Definition of midpoint.
5. Draw \overline{CM}	5. Two points determine a
	line.
6. \overline{CM} is a median	6. Definition of median.
7. $\overline{CM} \cong \overline{CM}$	7. Reflexive property of
	congruence.
8. $\Delta AMC \cong \Delta BMC$	8. SSS.
9. $\angle A \cong \angle B$	9. CPCTC.
10. $m \angle A = m \angle B$	10. Definition of congruence.

Isosceles Triangle Theorem (Proof 2)

- Given AC = BC, prove $m \angle A = m \angle B$.
- Draw median \overline{CM} to side \overline{AB} .
- Then, as shown in marked figure, $\Delta AMC \cong \Delta BMC$ by SSS.
- So $m \angle A = m \angle B$ from the congruent triangles.

Isosceles Triangle Theorem (Proof 3)

- Given AC = BC, prove $m \angle A = m \angle B$.
- Draw angle bisector \overline{CM} to side \overline{AB} .
- Then, as shown in marked figure, $\Delta ACM \cong \Delta BCM$ by SAS.
- So $m \angle A = m \angle B$ from the congruent triangles.

Isosceles Triangle Theorem (Proof 4)

- Given AC = BC, prove $m \angle A = m \angle B$.
- Draw perp. bisector \overline{CM} to side \overline{AB} .
- Then, as shown in marked figure, $\Delta ACM \cong \Delta BCM$ by ...
- How do we know the perpendicular bisector contains C?

Isosceles Triangle Theorem (Proof 5)

- Given AC = BC, prove $m \angle A = m \angle B$.
- $\triangle ACB \cong \triangle BCA$ by SAS.
- So $m \angle A = m \angle B$ from the congruent triangles.

Medians of \cong Triangles are \cong (Proof 1)

Given: $\Delta ABC \cong \Delta EFG$	Prove: $\overline{CD} \equiv \overline{GH}$
\overline{CD} is a median of ΔABC	
\overline{GH} is a median of ΔEFG	
Statements	Reason
1. $\Delta ABC \cong \Delta EFG$	1. Given
2. $\overline{AC} \cong \overline{EG}$	2. CPCTC
3. $\angle A \cong \angle E$	3. CPCTC
4. $\overline{AB} \cong \overline{EF}$	4. CPCTC
5. \overline{CD} is a median of ΔABC	5. Given
6.	6. Definition of a median
7. $\overline{AD} \cong \overline{DB}$	7.
$8. AD = \frac{1}{2}AB$	8. Division property of equality
9. \overline{GH} is a median of ΔEFG	9. Given
10.	10. Definition of a median
11. $\overline{EH} \cong \overline{HF}$	11.
12. $EH = \frac{1}{2}EF$	12. Division property of equality
13. $\frac{1}{2}AB = \frac{1}{2}EF$	13. Multiplication property of equality (see #4)
14. AD = EH	14.
15. $\overline{AD} \cong \overline{EH}$	15. Definition of congruence
16. $\Delta ADC \simeq \Delta EHG$	16.
17. $\overline{CD} \cong \overline{GH}$	17.

.: Medians of congruent triangles are congruent.

Medians of \cong Triangles are \cong (Proof 2)

- Use transformational reasoning:
 - Because the triangles are congruent, there is a sequence of basic rigid motions that maps one triangle onto the other.
 - Because rigid motions preserve lengths, the midpoints and therefore the medians will coincide, and thus they are congruent.
- These are worthwhile ideas!

Two-Column Proofs

- Obscure the key ideas
 - Every step carries the same weight
- Require remembered or invented names for every possible "reason"
 - Why do we so seldom use two columns in algebra?
- Give the impression that mathematics is about minutia
 - Sometimes math is about minutia, but let's save that for undergraduate math majors
- Restrict access to few students
- Let's encourage alternative proof formats
- Let's encourage multiple levels of formality
- Let's encourage proof in algebra

Frege's Aims of Proof

- 1. to put the truth of a proposition (the theorem) beyond rational (rather than psychological) doubt; <u>Understanding</u>
- 2. to afford insight into the pattern of dependence of truths upon one another; <u>Explanation</u>
- 3. to show why a proposition is true; and
- 4. to reduce the number of basic assumptions underlying mathematics.
- Which of these are most important for high school students?

From http://www.maa.org/press/periodicals/convergence/proofs-without-words-and-beyond-why-we-write-proofs

Improving Precision in Language

- A triangle has 180 degrees.
- A line measures 180 degrees.
- A circle is (or has) 360 degrees.

Opportunities for Explaining

- 3.OA.9. Identify arithmetic patterns ... and explain them using properties of operations.
- 3.MD.7. [Explain] commutativity of multiplication
- 4.NF.1. Explain equivalence of fractions using visual fraction models)
- 4.NBT.5. [Explain] multiplication of two two-digit numbers using strategies based on place value and the properties of operations.
- 6.G.1. [Explain] areas of polygons.
- 8.EE.1. Explain properties of integer exponents.
- 8.EE.6. Explain why slope is the same between any two points on a line
- 8.EE.7. Explain an equation with no solutions or infinitely many solutions
- 8.G.6. Analyze and justify an informal proof of the Pythagorean Theorem and its converse.
- 8.NS.1. [Explain] informally for rational numbers why their decimals terminate or repeat.

Opportunities for Explaining

- F.IF.8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
- A.REI.11. Explain why the x-coordinates of the points where the graphs of the equation y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x)
- N.RN.1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.
- N.RN.3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
- G.GPE.5. Justify the slope criteria for parallel and perpendicular lines.
- G.CO.14. Classify two-dimensional figures in a hierarchy based on properties.